
Announcements GADTs FIN

Software System Design and Implementation

Lecture 9: Generalised Algebraic Data Types

Johannes Åman Pohjola
University of New South Wales

Term 2 2023

1

Announcements GADTs FIN

Exam Information

Time: 8am-12pm AEST on Monday Aug 14.

Length: 2 hours. Make sure you start before 10AM.

Where: online. Link will appear on the course website.

2

Announcements GADTs FIN

Exam Information

Material: all material that was presented in the course,
including in lectures, practicals, exercise sets or
quizzes (except where we explicitly told you that the
material was not examinable).

Format: There will be quiz-style questions about design.
There will be theory questions. We may ask you to
write code and proofs, but no long-form software
implementation.

Sample exam will be released on the course website shortly.

3

Announcements GADTs FIN

GADTs

Generalized Algebraic Data Types (GADTs) is an extension to
Haskell that, among other things, allows data types to be specified
by writing the types of their constructors:

data Answer = Yes | No

-- is the same as

data Answer :: * where

Yes :: Answer

No :: Answer

4

Announcements GADTs FIN

GADTS

We will need to use two new language extensions to declare them.

{-# LANGUAGE KindSignatures,

GADTs,

StandaloneDeriving #-}

data Parity :: * where -- GADTs

Even :: Parity

Odd :: Parity

-- StandaloneDeriving

deriving instance Show Parity

deriving instance Eq Parity

5

Announcements GADTs FIN

Aside: Sum Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Sum :: * -> * -> * where

L :: a -> Sum a b

R :: b -> Sum a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Sum Parity Polarity have?

3 How many elements does Sum Polarity Polarity have?

Do we see why they are called sum types?

6

Announcements GADTs FIN

Aside: Sum Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Sum :: * -> * -> * where

L :: a -> Sum a b

R :: b -> Sum a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Sum Parity Polarity have?

3 How many elements does Sum Polarity Polarity have?

Do we see why they are called sum types?

7

Announcements GADTs FIN

Aside: Sum Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Sum :: * -> * -> * where

L :: a -> Sum a b

R :: b -> Sum a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Sum Parity Polarity have?

3 How many elements does Sum Polarity Polarity have?

Do we see why they are called sum types?

8

Announcements GADTs FIN

Aside: Sum Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Sum :: * -> * -> * where

L :: a -> Sum a b

R :: b -> Sum a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Sum Parity Polarity have?

3 How many elements does Sum Polarity Polarity have?

Do we see why they are called sum types?

9

Announcements GADTs FIN

Aside: Sum Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Sum :: * -> * -> * where

L :: a -> Sum a b

R :: b -> Sum a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Sum Parity Polarity have?

3 How many elements does Sum Polarity Polarity have?

Do we see why they are called sum types?

10

Announcements GADTs FIN

Aside: Product Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Prod :: * -> * -> * where

Pair :: a -> b -> Prod a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Prod Parity Polarity have?

3 How many elements does Prod Polarity Polarity have?

Do we see why they are called product types?
NB: here we count non-bottom elements; e.g. undefined doesn’t
count.

11

Announcements GADTs FIN

Aside: Product Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Prod :: * -> * -> * where

Pair :: a -> b -> Prod a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Prod Parity Polarity have?

3 How many elements does Prod Polarity Polarity have?

Do we see why they are called product types?
NB: here we count non-bottom elements; e.g. undefined doesn’t
count.

12

Announcements GADTs FIN

Aside: Product Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Prod :: * -> * -> * where

Pair :: a -> b -> Prod a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Prod Parity Polarity have?

3 How many elements does Prod Polarity Polarity have?

Do we see why they are called product types?
NB: here we count non-bottom elements; e.g. undefined doesn’t
count.

13

Announcements GADTs FIN

Aside: Product Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Prod :: * -> * -> * where

Pair :: a -> b -> Prod a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Prod Parity Polarity have?

3 How many elements does Prod Polarity Polarity have?

Do we see why they are called product types?
NB: here we count non-bottom elements; e.g. undefined doesn’t
count.

14

Announcements GADTs FIN

Aside: Product Types

data Parity = Even | Odd

data Polarity = Positive | Zero | Negative

data Prod :: * -> * -> * where

Pair :: a -> b -> Prod a b

Questions

1 How many elements does the type Polarity have?

2 How many elements does Prod Parity Polarity have?

3 How many elements does Prod Polarity Polarity have?

Do we see why they are called product types?
NB: here we count non-bottom elements; e.g. undefined doesn’t
count.

15

Announcements GADTs FIN

Sized lists

We can use GADTs+phantom types to encode the length of a list
in its type:

data Size = Z | S Size

data Vec :: * -> Size -> * where

Nil :: Vec a Z

Cons :: a -> Vec a n -> Vec a (S n)

Nil always has length 0 (Z)

Cons x xs is one longer than xs (S n)

Observation

This subsumes the distinct types for empty and non-empty lists
we’ve seen previously.

16

Announcements GADTs FIN

Sized lists

We can use GADTs+phantom types to encode the length of a list
in its type:

data Size = Z | S Size

data Vec :: * -> Size -> * where

Nil :: Vec a Z

Cons :: a -> Vec a n -> Vec a (S n)

Nil always has length 0 (Z)

Cons x xs is one longer than xs (S n)

Observation

This subsumes the distinct types for empty and non-empty lists
we’ve seen previously.

17

Announcements GADTs FIN

Sized lists

We can use GADTs+phantom types to encode the length of a list
in its type:

data Size = Z | S Size

data Vec :: * -> Size -> * where

Nil :: Vec a Z

Cons :: a -> Vec a n -> Vec a (S n)

Nil always has length 0 (Z)

Cons x xs is one longer than xs (S n)

Observation

This subsumes the distinct types for empty and non-empty lists
we’ve seen previously.

18

Announcements GADTs FIN

Sized lists

Look at the type of the map function for Vec:

mapV :: (a -> b) -> Vec a n -> Vec b n

mapV f Nil = Nil

mapV f (Cons x xs) = Cons (f x) (mapV f xs)

It says that if the input has length n, then so does the output. So
the property that mapV preserves length is enforced by the type
system!
Think about all the inductive proofs we don’t have to write.

19

Announcements GADTs FIN

Tradeoffs

GADTs are one of the most powerful static assurance tools
available in Haskell. But:

It can be difficult to convince the Haskell type checker that
your code is correct, even when it is.

Type-level encodings can make types more verbose and
programs harder to understand.

Too detailed types can make type-checking very slow,
hindering xsproductivity.

Be pragmatic!

Use type-based encodings when the assurance advantages
outweigh the potential disadvantages. The typical use case is to
eliminate partial functions from our code base

20

Announcements GADTs FIN

That’s all folks!

Thanks for taking the course.

Don’t forget to take the myExperience survey.

21

	Announcements
	

	GADTs
	

	FIN
	

